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e Machine-Learning based systems under attack

1. Assess the vulnerability of ML-based systems

2. Detect attacks, and devise secure ML algorithms

3. lllustrate the concepts in a smart building testbed
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® Machine Learning under attack?

() At training time

E!‘-}uﬂli *ERCHteS AFMMeTmeEan ]

i1 e T E 3
L EEBOE. . NASNIBNnE T
MEECLN G amENETRSFREE™

P
L

+]

]

]

=M [ 0 I
gl "ROS AW ARPGIRUETT 4"
SmEa | b RS {3

P Syle Labolm o e [ T ] <l R |
P8 SBRZESENGFIYENZ S GENRSEN i=8
SEB-DUBNLENT~ ¢ BNET VAN (PR
BEDEE ISERNTE D L RS Nale
BEESLEYFYE RWEEE IR Eg oS A E
e U - | R ® PO ERAGE S el [T Tl
BER BT AREL - DCal ERENINR 74




® Machine Learning under attack?

() At training time
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Slightly modify the data in an adversarial manner




® Machine Learning under attack?

() Attesttime
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® Machine Learning under attack?

() Attesttime

Slightly modify the input to the model in an adversarial manner
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Actuators Sensors
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A generic ML-aided control system

indicates ML components

a. ML helps interpreting sensor
measurements

b. ML helps adapting the control (decisions
taken) to a (partially) unknown system

c. ML helps building anomaly detectors
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A generic ML-aided control system
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external datasets
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A generic ML-aided control system
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e CLAS results in ML-based controlled systems

Optimal Risk
attacks management KTH live-in lab
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‘ RESULTS SO FAR
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Achievement snapshots

A - What are the threats and their potential impact?

e Optimal (or worse) attacks and their impact on
o Reinforcement Learning policy at test time
o Data-driven control policy at test and / or training time
o Remote and distributed state estimation

B - Securing learning algorithms
* Secure multi-sensor estimation mechanisms
* Worst-case (adversarial) ML algorithms (e.g. regression)

C - Securing ML-aided control systems
» Secure Reinforcement Learning algorthms
e Secure platooning
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Achievement snapshots

D - How can we evaluate risks and allocate defense resources accordingly?
* Game theoretical framework for risk management in advanced persistent threat

The Live-in Lab

* Analysis of privacy attacks with data generated from the virtual testbed

e Co-simulation Environment to test state-of-the-art ML libraries for control
* Analysis of weak links in the data flows in the Live-In Lab

> 60 published papers
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Example 1: Optimal attack / detection of RL policies

Attacking at test-time a control policy obtained through deep RL

1. Maximal detection rate of an attack 7r: P[detect] = e~ 1(m)

2. Optimal attack : min R(7) s.t. I(mw) > 7
v
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) Desired collaborations

) How secure and robust is your ML system?

) Contact: alepro@kth.se

17



	Slide 1: SSF CLAS Cyber-security for learning and control systems 
	Slide 2: Machine-Learning based systems under attack  
	Slide 3
	Slide 4: Machine Learning under attack?
	Slide 5: Machine Learning under attack?
	Slide 6: Machine Learning under attack?
	Slide 7: Machine Learning under attack?
	Slide 8
	Slide 9
	Slide 10
	Slide 11: CLAS results in ML-based controlled systems
	Slide 12: RESULTS SO FAR
	Slide 13: Achievement snapshots 
	Slide 14: Achievement snapshots 
	Slide 15: Example 1: Optimal attack / detection of RL policies
	Slide 16
	Slide 17: Desired collaborations

