
aSSIsT

Software Security for the IoT

Bengt Jonsson Luca Mottola
Shahid Raza Konstantinos Sagonas

aSSIsT: Software Security for the IoT

2023-02-06

Internet of Things (IoT):

▪ Primary concern: Security

Scope of aSSIsT:

▪ Security of IoT Software
• in platforms, communications, applications.

Challenges:

▪ Large attack surface
• Internet, Wireless, Physical

▪ Resource-constrained platforms
 Lack of support (memory protection, intrusion detection, …)

IoT Software Security: Challenges

aSSIsT: Software Security for the IoT

2023-02-06

aSSIsT Focus Directions
▪ Software Testing and Fuzzing

▪ Testing and verification of security protocol implementations

▪ Battery-Free Devices, (Physical Tampering)

▪ Trusted Execution Environments

Targets:

• IoT OSes: Contiki-NG, Zephyr

• IoT protocols: DTLS, QUIC, EDHOC

aSSIsT: Software Security for the IoT

2023-02-06

Participating Groups

aSSIsT: Secure Software for IoT

Project duration: 2018-2024, https://assist-project.github.io

Funding: Swedish Foundation for Strategic Research (SSF)

Uppsala University, Dept. IT
Senior: Bengt Jonsson, Kostis Sagonas, Mohammed Faouzi Atig
PostDocs: Paul Fiterau-Brostean, Sandip Ghosal, Rémi Parrot
PhD: Hooman Asadian, Sarbojit Das, Magnus Lång, Fredrik Tåkvist

RISE CS, Kista
Senior: Luca Mottola, Shahid Raza, Nicolas Tsiftes, Thiemo Voigt
PostDocs: Chetna Singhal
Ph.D: Anum Khurshid (just defended)

Reference Group
ASSA ABLOY, Intel Sweden, LumenRadio, Upwis, Wittra

https://assist-project.github.io/

aSSIsT: Software Security for the IoT

2023-02-06

Detect bugs and vulnerabilities using

Fuzzing (or Fuzz Testing)

fast software testing based on random inputs

Symbolic Execution

slow but effective in exploring most/all program paths

Hybrid Fuzzing

combines the two above

One of our targets: Contiki-NG

“The OS for Next Generation of IoT Devices”

Software Testing and Fuzzing

aSSIsT: Software Security for the IoT

2023-02-06

Created infrastructure to fuzz at different network stack layers

Detected and fixed:

• 18 vulnerabilities (in IPv6, 6LoWPAN, ICMPv6, and RPL)

• 11 of which come with CVEs

Evaluated the effectiveness of eight state-of-the-art fuzzing tools

• Mutation-based: AFL-gcc, AFL-clang-fast, Honggfuzz, Mopt-AFL

• Hybrid: Angora, QSYM, Intriguer, SymCC

with and without sanitizer support

Fuzzing the Contiki-NG Network Stack

C. Poncelet, K. Sagonas, N. Tsiftes. So Many Fuzzers, So Little Time - Experience from
Evaluating Fuzzers on the Contiki-NG Network (Hay)Stack. ASE 2022.

aSSIsT: Software Security for the IoT

2023-02-06

Testing of Security Protocols Implementations

DTLS Server

Connection Establishment in DTLS

Tester

Challenge 1: Test that

Only correctly ordered packets are received and sent

▪ E.g., Input with missing authentication packet should be rejected

Solution:

State Fuzzing

1. Test reaction to systematically constructed packet sequences

2. Learn model of implementation’s input-output behavior

3. Check packet ordering requirements on model

Applied to DTLS, SSH, TCP, EDHOC

P. Fiterau-Brostean, B. Jonsson, K. Sagonas, F. Tåkvist. Automata-Based Automated
Detection of State Machine Bugs in Protocol Implementations. NDSS 2023

aSSIsT: Software Security for the IoT

2023-02-06

Testing of Security Protocols Implementations

Packet structure in DTLS

Tester

Challenge 2: Test that

Only correct packet data is received and sent

▪ E.g., is correctness of size fields in input packets checked?

• Insufficient checks cause overreads/overwrites (cf. Heartbleed)

Solution:

Symbolic Execution

▪ Covers all values of data fields in input packets

▪ Detects insufficient checking of packet contents, and
incorrect data in output

▪ Applied to DTLS, QUIC

TLS server

DTLS Server

H. Asadian, P. Fiterau-Brostean, B. Jonsson, K. Sagonas. Applying Symbolic Execution to
Test Implementations of a Network Protocol Against its Specification. ICST 2022

struct {

ContentType type;

ProtocolVersion version;

uint16 epoch;

uint48 sequence_number;

uint16 length;

opaque fragment[DTLSPlaintext.length];

} DTLSPlaintext;

aSSIsT: Software Security for the IoT

2023-02-06

Fixes of bugs and vulnerabilities found in fuzzing research:

• For Contiki-NG:
• 18 bug fixes and 11 CVEs

• First continuous integration test suite for Contiki-NG which directly targets security

• For DTLS implementations:
• 30+ bug fixes and 3 CVEs

• In GnuTLS, Java SSE, OpenSSL, PionDTLS, Scandium, TinyDTLS, WolfSSL

• For QUIC implementations: 3 bug fixes

Open-source software tools:

• DTLS-Fuzzer: Framework for state fuzzing of DTLS implementations

• PropEr: Property-based testing, now also for network protocols

• Nidhugg: Finding concurrency errors in concurrent C code

Impact on Existing IoT Software

aSSIsT: Software Security for the IoT

2023-02-06

Trusted Execution Environments (TEE)

TEEs provide efficient mechanisms to isolate critical software functionality

▪ Secure boot, digital signatures, authentication, firmware update

▪ Memory and peripherals partitioned into secure and normal world

▪ ARM supports TEE security extension in microcontrollers: TrustZone-M

Trusted
AppTrusted

App

Normal
AppNormal

AppNormal
App

Secure World Normal World

Secure Memory Normal Memory

Peripherals

aSSIsT: Software Security for the IoT

2023-02-06

Challenges for TrustZone-M on resource-constrained devices:

1. Authenticating communication requests from normal to secure world

• ShieLD: Lightweight message protection scheme ensuring confidentiality and integrity,
does not rely on encryption

2. Detecting if a secure application is compromised

• TEE-watchdog: Mitigation of unauthorized activity in TEE

3. Remote attestation and Software-state certification of IoT devices

• AutoCert: Combines Software-state certification and PKI

4. Supporting TEEs in Contiki-NG

• Work in progress

Trusted Execution Environments (TEE)

Anum Khurshid, S.D. Yalew, M. Aslam, S. Raza. ShieLD: Shielding Cross-zone
Communication within Limited-resourced IoT Devices running Vulnerable Software
Stack. IEEE Transactions on Dependable and Secure Computing.

Anum Khurshid, S.D. Yalew, M. Aslam, S. Raza. TEE-Watchdog: Mitigating Unauthorized
Activities within Trusted Execution Environments in ARM-Based Low-Power IoT
Devices. Security and Communication Networks.

A. Khurshid, S. Raza. AutoCert: Automated TOCTOU-secure digital certification for IoT
with combined authentication and assurance. Elsevier Computers and Security.

aSSIsT: Software Security for the IoT

2023-02-06

Securing Intermittent Computing

CHARGING RUNNING

E
N

E
R
G

Y

TIME

STARTUP
THRESHOLD

OPERATING
THRESHOLD

Shutdown! Reboot!

Energy
Harvesting

aSSIsT: Software Security for the IoT

2023-02-06

▪ Problem: Securing persistent state
• Results: Comparing different schemes

▪ Problem: Energy attacks
• How to detect the attacker is messing with the source?

• How to mitigate the effects?

▪ Findings:
• Energy attacks may cause priority inversion, livelocks, and unwanted synchronization

▪ Outcomes:
• Monitoring system with 95%+

accuracy and little overhead

• Mitigation architecture to deal with it

• Multi-capacitor attack-aware energy management

• Open-source release soon!

Intermittent Computing: Results

H. Asad, E. Wouters, N. Bhatti, L. Mottola, T. Voigt. On Securing Persistent State in
Intermittent Computing. ENSSYS 2020.
A. Maioli, L. Mottola, J. Siddiqui, H. Alizai. Discovering the Hidden Anomalies of
Intermittent Computing. EWSN 2021.

aSSIsT: Software Security for the IoT

2023-02-06

Software fuzzing and testing

▪ Test effectiveness of fuzzing techniques on other IoT software

▪ Infrastructure for Fuzzing in new target environments

• In progress: fuzzing infrastructure on emulation platforms

(Infrastructure for) Testing protocol implementations

▪ Application to other IoT protocols: OSCORE, QUIC

▪ In progress: Testing EDHOC

TEEs

▪ In progress: Supporting TrustZone-M in Contiki

Intermittent computing

▪ Low-power reconfigurable hardware

Opportunities for Future Work and Collaboration

	Slide 1: aSSIsT Software Security for the IoT
	Slide 2: IoT Software Security: Challenges
	Slide 3: aSSIsT Focus Directions
	Slide 4: aSSIsT: Secure Software for IoT
	Slide 5: Software Testing and Fuzzing
	Slide 6: Fuzzing the Contiki-NG Network Stack
	Slide 7: Testing of Security Protocols Implementations
	Slide 8: Testing of Security Protocols Implementations
	Slide 9: Impact on Existing IoT Software
	Slide 10: Trusted Execution Environments (TEE)
	Slide 11: Trusted Execution Environments (TEE)
	Slide 12: Securing Intermittent Computing
	Slide 13: Intermittent Computing: Results
	Slide 14: Opportunities for Future Work and Collaboration

