

Side-Channel Vulnerability and Threat Analysis with Machine Learning in Focus

Elena Dubrova

School of Electrical Engineering and Computer Science

Royal Institute of Technology (KTH)

What is a side-channel attack?

Motivation: In the near future ...

- Millions not so well protected Internet-connected devices will be involved • in services related to confidential data
 - Wearables ۲
 - Connected cars
 - Smart home

source: http://www.wearables.com/5-babymonitors-wearable-infant-tech/

source: http://www.dqindia.com/cognizant-is-betting-big-on-connected-cars/

source: https://blog.econocom.com/en/blog/smartbuilding-and-bms-a-little-glossary/

ANDY GREENBERG SECURITY 03.17.16 6:59 PM

THE FBI WARNS THAT CAR HACKING IS A REAL RISK

ANDY GREENBERG SECURITY 07.21.15 6:00 AM

HACKERS REMOTELY KILL A JEEP ON THE HIGHWAY --WITH ME IN IT

Hacker looks to sell 9.3 million alleged patient healthcare records on the dark web

By James Rogers Published June 28, 2016

What does Fitbit hacking mean for wearables and IoT?

BY STEPHEN COBB POSTED 12 JAN 2016 - 02:49PM

The price of wearable craze: Personal health data hacks

Your personal health information is about 10 times more valuable than a stolen credit card number on the black market.

Maggie Overfelt, special to CNBC.com Saturday, 12 Dec 2015 | 5:05 PM ET

MSB project structure

- 5-year project granted by MSB (2021-03-15 2026-03-14)
- Two partners:
 - KTH

Elena Dubrova and one PhD student

• LTH

Thomas Johansson and one PhD student

photo credit: Martin Brisfors

MSB project goals

- Advance state-of-the-art in side-channel analysis using the toolbox of machine learning
- Develop new methods for side-channel leakage assessment
- Design countermeasures against side-channel attacks and supporting tools

photo credit: Katerina Gurova

Results so far

3 journal and 5 conference/workshop papers published

- 1. A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM, K. Ngo, E. Dubrova, Q. Guo, T. Johansson, TCHES'2021
- 2. A Key-Recovery Side-Channel Attack on Classic McEliece Implementations, Q. Guo, A. Johansson, T. Johansson, TCHES'2022
- 3. Don't Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE, Q. Guo, C. Hlauschek, T. Johansson, N. Lahr, A. Nilsson, R. L. Schröder, TCHES'2022
- 4. Breaking Masked and Shuffled CCA Secure Saber KEM by Power Analysis, K Ngo, E Dubrova, T. Johansson, ASHES'2021
- 5. Side-Channel Analysis of the Random Number Generator in STM32 MCUs, K. Ngo, E. Dubrova, GLSVLSI'2022
- 6. Side-Channel Analysis of Saber KEM Using Amplitude-Modulated EM Emanations, R. Wang, K. Ngo and E. Dubrova, DSD'2022
- 7. A Message Recovery Attack on LWE/LWR-Based PKE/KEMs Using Amplitude-Modulated EM Emanations, R Wang, K Ngo, E Dubrova, ICISC'2022
- 8. Breaking a Fifth-Order Masked Implementation of CRYSTALS-Kyber by Copy-Paste, E Dubrova, K Ngo, J Gärtner, Real World Crypto Symposium 2023

Side-channel analysis of CRYSTALS-Kyber

- In July 2022 NIST selected CRYSTALS-Kyber as a new public-key encryption and key encapsulation algorithm to be standartized
- NSA included CRYSTALS-Kyber in the suite of cryptographic algorithms recommended for national security systems

photo credit: Kalle Ngo

- 1. Breaking a Fifth-Order Masked Implementation of CRYSTALS-Kyber by Copy-Paste, E Dubrova, K Ngo, J Gärtner, RWC'2023
- A Message Recovery Attack on LWE/LWR-Based PKE/KEMs Using Amplitude-Modulated EM Emanations, R Wang, K Ngo, E Dubrova, ICISC'2022
- 3. Secret Key Recovery Attacks on Masked and Shuffled Implementations of CRYSTALS-Kyber and Saber, *L. Backlund, K. Ngo, J.* Gärtner, E. Dubrova, submitted to DAC'2023
- 4. A Side-Channel Attack on a Hardware Implementation of CRYSTALS-Kyber, Y. Ji, R. Wang, K. Ngo, E. Dubrova, L. Backlund, submitted to ETS'2023
- 5. Higher-Order Boolean Masking Does Not Prevent Side-Channel Attacks on LWE/LWR-based PKE/KEMs, K. Ngo, R. Wang, E. Dubrova, N. Paulsrud, submitted to ISMVL'2023

Masking and shuffling counteremeasures

How deep learning helps break masking

Securing Reconfigurable Hardware in the Era of AI

Elena Dubrova

School of Electrical Engineering and Computer Science Royal Institute of Technology (KTH)

FPGA background

- Reconfigurable hardware, such as Field Programmable Gate Arrays (FPGAs), is widely used for implementing cryptographic algorithms and accelerating AI-related workloads
- Available countermeasures do not provide adequate protection against physical attacks using ML techniques

0000	0000	0048	0000	0000	0006	2000	0000	
0000	0000	0000	0000	0000	0000	0000	0009	
7300	0000	0000	0000	0000	0000	0000	0000	
0000	0000	0000	0000	0000	0000	0000	0000	
0000	0000	0000	0000	0000	0000	0000	0000	
0000	0000	0000	0000	0000	0000	0000	0000	
0000	0000	0000	0000	0002	2000	0000	0000	
0002	2000	0000	0106	3102	2a40	0000	0106	
b502	2000	0000	0100	d102	2000	0000	0000	
0000	0000	0000	0000	0000	0000	0000	0000	
								_

VINNOVA project structure

- 26 months project granted by VINNOVA (2021-07-01 - 2023-08-31)
- Two partners:
 - KTH

Elena Dubrova and two PhD students

• Ericsson

photo credit: Yang Yu

Håkan Englund and Niklas Lindskog, Platform Security Group, Ericsson Research

VINNOVA project goals

- Develop new FPGA security
 assessment methods
- Design countermeasures against physical attacks on FPGA implementations

Results so far

- 6 patent applications submitted
- 1 journal and 3 conference papers published
 - FPGA Design Deobfuscation by Iterative LUT Modifications at Bitstream Level, M Moraitis, E Dubrova, Journal of Hardware Security, 2023
 - 2. Do Not Rely on Clock Randomization: A Side-Channel Attack on a Protected Hardware Implementation of AES, M. Brisfors, M. Moraitis, E Dubrova, FPS'2022
 - 3. Towards Generic Power/EM Side-Channel Attacks: Memory Leakage on General-Purpose Computers, C. Aknesil, E. Dubrova, VLSI-SOC'2022
 - 4. A Side-Channel Resistant Implementation of AES Combining Clock Randomization with Duplication ", M. Moraitis, M. Brisfors, E. Dubrova, N. Lindskog, H. Englund, ISCAS'2023

Clock randomization countermeasure (Kocher'99)

Stable clock power trace

Randomized clock power trace

New counteremeasure

AES key recovery

AES-128 Implementation	# Power traces (mean for 1000 tests)
Unprotected	116
Duplicated with stable clock	220
Duplicatied with one randomized clock	265
Duplicatied with two randomized clocks	-

Advantages of new countermeasure:

- Simplicity of implementation
- Application independence
- Glitch immunity
- Universality of coverage

Summary

Current status:

- Deep learning side-channel attacks are very powerful; they can overcome traditional countermeasures such as masking, shuffling, randomized clock, etc.
- We introduced a DL-resistant countermeasure suitable for hardware implementations

Future steps:

• Develop DL-resistant countermeasure suitable for software implementations

Myndigheten för samhällsskydd och beredskap

Thank you!

SXQgaXMgcG9zc2 libGUgdG8g aW52ZW50I uZ2xlIG1h Y2hpbmUgd2 gY2FuIGJ1 IHVzZWQgdG tcHV0ZSBh bnkg¥29tcH JsZSBzZXF1 ZW5jZS4qSW pcyBtYWNo aCBpcyB3c **UIHROZSBT** LkQgb2¥gc b21wdXRp bmcgbWFj BNLCB0aG VuIFUgd21sbCBjb21wdX R1IHRoZSBzYW11IH NlcXVlbmN1IG **FzIEOuCg** ==

TEOSA Vetenskapsrådet