
ARVOS
AI- and Risk-based Vulnerability 
Management
for Trustworthy Open Source Adoption



Emil Wåreus
Co-Founder & 
Head of Data Science
emil.wareus@debricked.com



More vulnerabilities 
discovered each year

Vulnerabilities in Open Source

More alerts and work 
required for developers



The “Cry Wolf” problem

Large lists of 
vulnerabilities to handle

Rich information on the 
vulnerability itself

Poor contextualization to 
my code



The 4 levels of 
precision A large dataset on open source 

vulnerabilities

Matching correctly to open 
source being used in codebase

The vulnerable part is used by 
codebase

ALERT USER

Vulnerabilities

180k

200

20

10 The vulnerable code is executed 
in a critical environmentARVOS

1. Are you using vulnerable 
OSS?

2. Are you calling the 
vulnerable part of the OSS?

3. Is the vulnerable part 
being called in a critical 
environment?

4. Is the vulnerability 
exploitable?



Finding the Vulnerable Functionality 

Only a part of the OSS project is 
affected by the affected 
vulnerability



ARVOS architecture



Finding the Vulnerable Functionality 



Tracing the Vulnerable Function Calls

Trace Vulnerable Code Execution 
in your CI

Get stack-trace reports, 
displaying how you reached the 
vulnerable code

Available as GitHub Action



Demo

https://github.com/arvos-dev/spring-vulnerable-app

https://github.com/arvos-dev/spring-vulnerable-app


Thank you!
emil.wareus@debricked.com

https://github.com/arvos-dev


	Slide 1: ARVOS AI- and Risk-based Vulnerability Management for Trustworthy Open Source Adoption
	Slide 2: Emil Wåreus
	Slide 3: Vulnerabilities in Open Source
	Slide 4: The “Cry Wolf” problem
	Slide 5: The 4 levels of precision 
	Slide 6: Finding the Vulnerable Functionality 
	Slide 7: ARVOS architecture
	Slide 8: Finding the Vulnerable Functionality 
	Slide 9: Tracing the Vulnerable Function Calls
	Slide 10: Demo
	Slide 11: Thank you!

