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Background

Machine learning

Important in many industries (process, automotive,

)

Requires (sensitive) user/company data

Can be computationally complex

Can be implemented in the cloud

Scalable and flexible
Cost-efficient
Low-maintenance

Machine learning as a service (MLaaS)

Data security threats

Industrial/governmental espionage

User privacy and integrity

Local legislation

Data breaches or leaks
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Project goals

1. Data security: Homomorphic
encryption

e Allows processing encrypted data
without decrypting it

2. Privacyl/integrity: Differential privacy

e Ensures that individual data points
can not be distinguished

3. Platform requirements and
demonstration

e Computational requirements,
network/system architecture
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Homomorphic encryption

Homomorphic encryption:

flxoy)=f(z)o fly) & Enc(zoy) = Enc(z) o Enc(y)

Fully homomorphic encryption (FHE):
« Supports addition and multiplication
. Computationally complex

. Limited to, e.g., integers or in number of consecutive operations (levels)
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Partially Homomorphic Encryption

« Supports limited types of operations (e.g., addition or
multiplication)

» Computationally less complex

« Several schemes need to be combined or some
operations need to be done in plain text
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FHE: Cheon-Kim-Kim-Song scheme

« Fully homomorphic scheme
— supports addition & multiplication

. Uses approximate arithmetic: ~ Enc(z o y) ~ Enc(x) o Enc(y)

. Leveled
- Can be extended to support unlimited operations (bootstrapping)

. Complex functions can be implemented using polynomial approximations

- Approximation must not exhaust the number of levels
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Example: KNN using CKKS (1/2)

k-Nearest Neighbors (kNN):

« Simplistic approach for classification/prediction, based on
finding k closest points to a test input

. Computational primitives:

- Calculating the distance between data points (e.g., Euclidean
distance)

- Comparing distances and sorting
- Weighted average / majority vote




Example: KNN using CKKS (2/2)

Some conclusions:

 Individual multiplications may be computationally complex (depending on the
security parameters) but not a problem

« Approximation of functions using polynomials consumes many levels due to
the multiplications

- Good approximations often require high polynomial orders - consume
many levels

- Bootstrapping (refreshing the ciphertext) is expensive, and the main
challenge is taking decisions and acting upon the mathematical output
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Overview of results

« Understanding of HE and CKKS, their
challenges and complexity

« Design studies for secure distributed
computation network

 Implementation of PoOC ongoing




Partners and funding
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Collaboration Opportunities

« Research

o Industrial stakeholders
- Use-cases
- Reference group

o Verification and auditing
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